Utilizing Markov Chain Monte Carlo (MCMC) Method for Improved Glottal Inverse Filtering

نویسندگان

  • Harri Auvinen
  • Tuomo Raitio
  • Samuli Siltanen
  • Paavo Alku
چکیده

This paper presents a new glottal inverse filtering (GIF) method that utilizes Markov chain Monte Carlo (MCMC) algorithm. First, initial estimates of the vocal tract and glottal flow are evaluated by an existing GIF method, the iterative adaptive inverse filtering (IAIF). Simultaneously, the initially estimated glottal flow is synthesized using the Klatt model and filtered with the estimated vocal tract filter. In the MCMC estimation process, the first few poles of the initial vocal tract model and the Klatt parameter are refined in order to minimize the error between the original and the synthetic signals. MCMC converges to the optimal result, and the final estimate of the vocal tract is found by averaging the parameter values of the Markov chain. Experiments show that the MCMC-based GIF method gives more accurate results compared to the original IAIF method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic glottal inverse filtering with the Markov chain Monte Carlo method

Automatic glottal inverse filtering with the Markov chain Monte Carlo method Harri Auvinen a, Tuomo Raitio b,∗, Manu Airaksinen b, Samuli Siltanen a, Brad H. Story c, Paavo Alku b a Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland b Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland c Department of Speech and Hearing Sciences, Univ...

متن کامل

Population Based Particle Filtering

This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...

متن کامل

On-road Visual Vehicle Tracking Using Markov Chain Monte Carlo Particle Filtering with Metropolis Sampling

In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain g...

متن کامل

Decayed MCMC Filtering

Filtering-estimating the state of a partially ob­ servable Markov process from a sequence of observations-is one of the most widely stud­ ied problems in control theory, AI, and com­ putational statistics. Exact computation of the posterior distribution is generally intractable for large discrete systems and for nonlinear con­ tinuous systems, so a good deal of effort has gone into developing r...

متن کامل

Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces

In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012